Case-based reasoning and neural network based expert system for personalization
نویسندگان
چکیده
We suggest a hybrid expert system of case-based reasoning (CBR) and neural network (NN) for symbolic domain. In previous research, we proposed a hybrid system of memory and neural network based learning. In the system, the feature weights are extracted from the trained neural network, and used to improve retrieval accuracy of case-based reasoning. However, this system has worked best in domains in which all features had numeric values. When the feature values are symbolic, nearest neighbor methods typically resort to much simpler metrics, such as counting the features that match. A more sophisticated treatment of the feature space is required in symbolic domains. We propose feature-weighted CBR with neural network, which uses value difference metric (VDM) as distance function for symbolic features. In our system, the feature weight set calculated from the trained neural network plays the core role in connecting both the learning strategies. Moreover, the explanation on prediction can be given by presenting the most similar cases from the case base. To validate our system, illustrative experimental results are presented. We use datasets from the UCI machine learning archive for experiments. Finally, we present an application with a personalized counseling system for cosmetic industry whose questionnaires have symbolic features. Feature-weighted CBR with neural network predicts the five elements, which show customers’ character and physical constitution, with relatively high accuracy and expert system for personalization recommends personalized make-up style, color, life style and products. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-...
متن کاملMicrosoft Word - ICAME09_opti_leslabay_final
The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-...
متن کاملDesigning an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملA Web-based Hybrid Intelligent System Framework
With the advent of Web technology, the intelligent systems need to be web-based so that the decision makers and users can access and use them using machines supporting browsers. Web-based Internet and Internet environment facilitates development of centralized decision-making solutions. Instead of solving a problem using a single intelligent technique like expert system, neural network, case-ba...
متن کاملApplication of Factor Neural Network in Multi- Expert System for Oil-gas Reservoir Protection
Knowledge representation and reasoning model play an important role in multi-expert system. In this paper, a new knowledge representation method, factor neural network theory(FNN), is used in multi-expert system for oil-gas reservoir protection. Firstly, by introducing factor and factor space theory, knowledge representation model based on factor state space is presented. Secondly, analog facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 32 شماره
صفحات -
تاریخ انتشار 2007